网站地图
zenghuilan.com
生活小窍门 解释生活中的一切名词
博弈论与经济行为(诺伊曼和摩根斯特恩合著的经济学著作) 发布于:

《博弈论与经济行为》是约翰·冯·诺伊曼和奥斯卡·摩根斯特恩合著的经济学著作,于1944年首次出版。

《博弈论与经济行为》首先从讨论经济行为出发,说明了建立博弈论的必要性。然后通过细致的分析,引出了对博弈概念的公理化描述。接着再系统而全面地建立了博弈理论,最后又回过头来研究经济行为及一些其他方面的问题,作为理论的直接应用。该书理论建立的线索是:首先,建立二人零和博弈的完整理论;其次,在二人零和博弈论的基础上,建立n人零和博弈的理论;最后,证明一个一般的n人非零和博弈可以化为一个(n+1)人零和博弈。这样,就在理论上解决了一切有穷博弈的问题。

虽然《博弈论与经济行为》旨在把博奕理论运用于经济和社会问题研究,但它的大部分篇幅是用来阐述“博奕论”的数学理论论证。《博弈论与经济行为》全书共分12章:经济问题的陈述;策略对策的一般形式描述;二人零和博奕:理论;二人零和博奕:例;三人零和博奕;理论的一般陈述:n人零和博奕;四人零和博奕;某些有关参加人数n≥5时的注记;博奕的复合与分解;单纯博奕;一般非零和博奕;优越与解的概念的推广。此外,从第二版起,又增加了一个附录:效用的公理化处理。

全书内容可分为四个部分:

一、经济学中的数学方法和经济行为的定量研究:这一部分包括第1章,共有4节,纽曼就一系列基本的问题,特别是就经济学和数学的关系进行了论述。

二、博奕论的数学描述:这一部分包括第2章。主要讨论了用数学形式对博奕问题进行规范化的表达。

三、二人零和博奕:这一部分包括第3、4两章,主要结论是“冯·诺依曼最小最大定理”,该定理是1928年冯·诺依曼在创立博奕论理论基础时提出来的。

四、具有合作对策的三人以上博奕: 这一部分包括从第5章到第12章的8章内容。讨论了多人博奕的问题,任何三人以上的博奕都有一个合作的问题,这一点与二人博奕有较大差别。

第一版序

第二版序

第三版序

技术说明

致谢

第1章 经济问题的描述

1.经济学中的数学方法

2.理性行为问题的定性分析

3.效用的概念

4.理 论结构:解和行为标准

第2章 策略博弈的一般形式

5.概论

6.简化的博弈概念

7.完备的博弈概念

8.集合和分拆

9.博弈的集合论描述

10.公理化描述

11.策略和博弈描述的最终简化

第3章 二人零和博弈:理论

12.准备性研究

13.谓词演算

14.严格决定的博弈

15.具有完美信息的博弈

16.直线性凸性

17.混合策略:全部博弈的解

第4章 二人零和博弈的例子

18.一些基本的博弈

19.扑克与诈叫

第5章 三人零和博弈

20.准备性研究

21.三人简单多数博弈

22.更多例子

23.一般情况

24.关于一个反对意见的讨论

第6章 一般理论的描述:N人零和博弈

25.特征函数

26.用一个给定的特征函数构造一个博踏坑弈

27.策略等价性:非本质博弈和本质博弈

28.群、对称性和公平

29.三人零和博弈的重新讨论

30.一般定义的严格形式

31.结果

32.本质三人零和博弈的全连寻戒部解的确定

33结论

第7章 四人零和博弈屑记协

34.准备性研究

35.立方体Q的一些特殊点的讨论

36.主对角线讨论

37.中心及其周围

38.中心点邻近的一族解

第8章 关于n≥5博弈的一些说明

39.各类博弈的参数个数

40.对称五姜市跨柜人博弈

第9章 博弈的合成与分解

41.合成与分解

42.理论的修改

43.分解分拆

44.可分解博弈:理论的进一步推广

45.对剩余的限制和扩展的理论结构

46.一个可分解的博弈全部解的决定

47.新理论中的本质三人博弈

第10章 简单博弈

48.胜利联盟、失败联盟及其出现的博弈

49.简单博弈的特征描述

50.多数博弈和主解

51.全部简单博弈的枚举方法

52.n较小时的简单博弈

53.n≥6简单博弈及其新情况

54.适宜博弈中全部解的确定

55.简单博弈【1,……,1,n—2】

第11章 一般非零和博弈

56.理论的坑充糠扩展

57.特征函数及相关问题

58.特征函数的解释

59.一般分析

60.n≤3一般博弈的解

61.n=1,2时结果的经济学解释

62.n=3时结果的经济学解释:特殊情况

63.n=3时结果的经济学解释:一般情况

64.一般市场

第12章 占优与解的项蜜白概念扩展

65.扩展:特殊情况

66.效用概念的推广

67.一个例子

附录:效用的公理化描述

A.1问题描述

A.2基于公理的推导

A.3总结说明

人名索引

词条索引

译者后记

约翰·冯·诺依曼对经济问题感兴趣,尤其在经济决策方面有自己的独到见解。1928年他发表了一篇有关“二人零和博奕”的论文,为建立博奕理论走出了第一步。博奕问题又称决策问题,常见于下棋、打牌、赛马等竞赛性活动中。诺依曼感觉到从中可以找到与经济决策有关的联系。为此,他与奥地利学派的经济页海蒸连学家摩根斯特恩长期合作,写成了《博弈论与经济行为》。

1、经济学和数学的关系

在诺依曼看来,数学在经济学中应用得还不太成功的原因,首先在于很多经济学问题提得不明确,常有许多不定因素。其次,在那些问题提得明确的地方,由于未能使用合适的数学工具,所以也常常出现失败。另外,经济学中尚未有系统的、科学博弈论的有效观察。因此,很难期望数字能顺利地进入经济研究领域。诺依曼认为,该书的目的不在于经验研究,而是试图从有关人类行为的一般性论点着手,寻找既有助于数字处理,又有重要经济学意义的研究途径。诺依曼认为,要做到这一点就要发展新的数学方法,甚至创立新的数学分科。诺依曼指出,在社会性交换经济中,其特征与普通的极值问题不同,是多个相互冲突的最大值问题的一种混合。这类问题的复杂性取决于事件参加者的人数。三人博弈与二人博弈根本不同,而四人博弈又和三人博弈情况不一样。如果参加者很多,以致单个人的作用可以忽略不计时,问题反而简单了。有大量参加者的情况,可用经典的竞争理论来解释,而对于经济问题来说,2、3、4……个参加者的情况,也没有完全相同的理论。因此,必须先从有少数参加者的情况出发,逐渐进入有大量参加者的情况,再通过“极限转换”进入自由竞争的情形。诺依曼在论述了为什么把效用函数作为一个数值函数是合理的之后,阐述了什么叫“一个博弈问题的解”。在诺依曼看来,首先应说明什么叫“社会总体的行为标准”。从这个“标准”出发,人们就能对两个社会状态进行比较,比较它们谁优谁劣,或者两者“没有差别”或者两者“无法比较”。所谓问题的解就是某一种状态,从总体上说人们找不到比它更优的其他状态。博弈问题的状态在一个社会经济问题中可理解为是一种对资源或利益的分配。

2、博弈问题的规范化表达

一个博弈问题,可根据有多少个参加者来分类。例如,有二人参加的叫二人博弈(如下棋),有四个人参加的叫四人博弈(如打麻将)。每个参加者有一套自己的策略与代表其利益的支付函数。支付函数的值取决于各个参加者所采取的策略。如果参加者的利益总和为零,如下棋双方的一输一赢或和局,这种博弈称为零和博弈,否则为非零和博弈。在有的博弈中,参与者都能了解所有情况,则称为“具有完全信息的博弈”,反之则称为“具有不完全信息的博弈”。有的允许参加者相互合作,这称为“合作博弈”,相反的情形则称为“非合作博弈。”诺伊曼分别用严格的定义与数学方式对它们进行了表述。

3、二人零和博弈

“冯・诺依曼最小最大定理”内容大致如下:

在二人零和博弈中,由于两人的支付函数之和为零,故可用个函数来代表两个人的利益,即函数既表示甲的支付,又表示乙的相应收益。对于甲来说,他采取的策略是保证使其支付得越少越好,然而由于甲不知道乙采取什么策略,于是他采取的一种谨慎的做法就是对自己采取的所有策略都作了预期最坏的打算:考虑其每一策略都有可能是最大的,而在所有这些最大支付中取最小者,由此可得到甲的所谓“最小最大策略”。同理,可提出对乙的“最大最小策略”。当两者分别采取这样的策略后,由于相互都已考虑了最坏的情况,则最终结果就不会比预期的更坏。一般而言,对于一个二人零和博弈,不一定达到两个人所预期的“最小最大”和“最大最小”的情况。但是,“冯·诺依曼最小最大定理”指出,假如允许考虑所谓“混合策略”,即在博弈中引进概率概念,按照这种观点,博弈中的两人所采取的策略是随机的,如甲采取策略A的可能性为60%,采取策略B的可能性为40%等,那么在支付函数满足一定合理条件的情况下,甲的“最小最大混合策略”与乙的“最大最小策略一定能在某个策略组合下达成一致。

4、零和博弈的引申

诺依曼提出,从二人零和博弈转移到三人零和博弈使单纯的利害对立退出了问题的核心。在博弈参加者中,出现了挑选同盟者以建立共同利害关系的问题,而这一问题在二人零和博弈中是不存在的。并且随着参加博弈的人数增多,博弈的复杂程度会急剧变化。诺依曼在二人零和博弈论的墓础上,建立了n人零和博弈的理论;最后,证明了一个一般的n人非零和博弈可以化为一个(n+1)人零和博弈。这样,就在理论上解决了一切有穷博弈的问题。

《博弈论与经济行为》被认为是20世纪社会科学的经典著作之一,是博弈论(也称为对策论)的奠基性著作,该书的出版标志着博弈论的真正形成。

《博弈论与经济行为》原版为英文版,于1944年由普林斯顿大学出版社出版,后于1947年和1953年两次再版,1972年与1980年再次重印。该书曾由王建华等译为中文,书名《竞赛论与经济行为》,1963年由科学出版社出版,但不易见。

约翰·冯·诺伊曼

约翰·冯·诺伊曼(John von Neuman,1903—1957),数学家,被称为“计算机之父”。1926年获得数学博士学位。1933年加入美国国籍。1940年以后参与多次军事领域的应用研究。1943年参与曼哈顿计划。1946年在普林斯顿高等研究院进行“完全自动通用数字电子计算机”的研制,并于1951年制造成功,这是现代通用机的原型,他开创了人工智能研究的新领域。他的研究成果算子代数被称为冯·诺伊曼代数。主要论著有《论博弈策略》《量子力学逻辑》《博弈论与经济行为》《函数算子》《计算机与人脑》等。

奥斯卡·摩根斯特恩

奥斯卡·摩根斯特恩(Oskarl Morgensten,1902—1977),又名摩根斯坦,美国经济学家。1902年1月24日生于西里西亚的戈尔利策;1977年7月26日卒于新泽西州普林斯顿。曾任维也纳大学教授。1938—1977年任普林斯顿大学经济系教授。主要著作有:《对策论和经济行为》等。


相关文章推荐:
约翰·冯·诺伊曼 | 奥斯卡·摩根斯特恩 | 奥地利学派 | 普林斯顿大学出版社 | 曼哈顿计划 | 冯·诺伊曼代数 | 计算机与人脑 | 维也纳大学 | 普林斯顿大学 |